Identification of a Major Determinant for Serine-Threonine Kinase Phosphoacceptor Specificity

نویسندگان

  • Catherine Chen
  • Byung Hak Ha
  • Anastasia F. Thévenin
  • Hua Jane Lou
  • Rong Zhang
  • Kevin Y. Yip
  • Jeffrey R. Peterson
  • Mark Gerstein
  • Philip M. Kim
  • Panagis Filippakopoulos
  • Stefan Knapp
  • Titus J. Boggon
  • Benjamin E. Turk
چکیده

Eukaryotic protein kinases are generally classified as being either tyrosine or serine-threonine specific. Though not evident from inspection of their primary sequences, many serine-threonine kinases display a significant preference for serine or threonine as the phosphoacceptor residue. Here we show that a residue located in the kinase activation segment, which we term the "DFG+1" residue, acts as a major determinant for serine-threonine phosphorylation site specificity. Mutation of this residue was sufficient to switch the phosphorylation site preference for multiple kinases, including the serine-specific kinase PAK4 and the threonine-specific kinase MST4. Kinetic analysis of peptide substrate phosphorylation and crystal structures of PAK4-peptide complexes suggested that phosphoacceptor residue preference is not mediated by stronger binding of the favored substrate. Rather, favored kinase-phosphoacceptor combinations likely promote a conformation optimal for catalysis. Understanding the rules governing kinase phosphoacceptor preference allows kinases to be classified as serine or threonine specific based on their sequence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential targeting of the stress mitogen-activated protein kinases to the c-Jun dimerization protein 2.

The mitogen-activated kinases are structurally related proline-directed serine/threonine kinases that phosphorylate similar phosphoacceptor sites and yet, in vivo, they exhibit stringent substrate specificity. Specific targeting domains (kinase docking domains) facilitate kinase-substrate interaction and play a major role in substrate specificity determination. The c-Jun N-terminal kinase (JNK)...

متن کامل

c-Jun Can Recruit JNK to Phosphorylate Dimerization Partners via Specific Docking Interactions

Structurally related serine/threonine kinases recognize similar phosphoacceptor peptides in vitro yet in vivo, they phosphorylate distinct substrates. To understand the basis for this specificity, we studied the interaction between the Jun kinases (JNKs) and Jun proteins. JNKs phosphorylate c-Jun very efficiently, JunD less efficiently, but they do not phosphorylate JunB. Effective JNK substrat...

متن کامل

Positive and negative phosphorylation regulates RIP1- and RIP3-induced programmed necrosis.

Programmed necrosis or necroptosis is controlled by the action of two serine/threonine kinases, RIP1 (receptor-interacting serine/threonine protein kinase 1; also known as RIPK1) and RIP3. The phosphorylation of RIP1 and RIP3 is critical for assembly of the necrosome, an amyloid-like complex that initiates transmission of the pro-necrotic signal. In the present study, we used site-directed muta...

متن کامل

Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases.

The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs) that are structurally related to eukaryotic kinases. To gain insight into the role of Ser/Thr phosphorylation in this major global pathogen, we used a phosphoproteomic approach to carry out an extensive analysis of protein phosphorylation in M. tuberculosis. We identified more than 500 phosphorylation even...

متن کامل

Tyrosine Phosphorylation of the BRI1 Receptor Kinase Occurs via a Post-Translational Modification and is Activated by the Juxtamembrane Domain

In metazoans, receptor kinases control many essential processes related to growth and development and response to the environment. The receptor kinases in plants and animals are structurally similar but evolutionarily distinct and thus while most animal receptor kinases are tyrosine kinases the plant receptor kinases are classified as serine/threonine kinases. One of the best studied plant rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014